• Hyper T-cell activation driven by concurrent TCE + IMiD + anti-PD1 improves responses in high tumor burden setting but drives lethal CRS.

  • Pretreatment with CELMoDs + DEX reshapes bone marrow T-cell compartment and overcomes primary resistance to TCE.

Abstract

Bispecific T-cell engagers (TCEs) targeting B-cell maturation antigen (BCMA) and CD3, induce deep hematologic responses in ∼60% of heavily pretreated patients with multiple myeloma (MM). We and others found that high tumor burden leads to resistance to TCE and novel strategies are urgently needed to improve responses in this setting. Ikaros degraders, including immunomodulatory drugs (IMiDs) and cereblon E3 ligase modulatory drugs (CELMoDs), represent logical partners for TCEs due to their direct anti-MM effects and additional immune-stimulatory activity; however, it is unclear how to optimally combine them with TCEs. Taking advantage of the immunocompetent IMiD-sensitive Vk∗MYChCRBN murine model of MM, we optimized strategies to overcome primary resistance to BCMA-TCEs and achieve sustained remission, while maintaining a manageable safety profile. The addition of anti–programmed cell death protein 1 (PD1) and pomalidomide reduced the T-cell exhaustion that occurs in response to TCEs in high tumor burden settings. This allowed for a higher degree of T-cell activation and significant improvement in response rates but also increased risk of lethal cytokine release syndrome (CRS). To moderate the response and prevent CRS, we evaluated Ikaros degraders and dexamethasone (DEX) with step-up–dosed TCEs. Pretreatment with iberdomide and DEX reshaped the bone marrow T-cell compartment, promoted infiltration of naïve T cells, and generated 100% response rates and the longest survival in subjects with high tumor burden. This was accompanied by more favorable T-cell profiling, with limited expansion of regulatory T cells and exhaustion. Overall, administering a TCE after DEX and iberdomide treatments provided deeper and more durable responses with a reduced risk of CRS.

1.
Moreau
P
,
Garfall
AL
,
van de Donk
N
, et al
.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
2.
Lesokhin
AM
,
Tomasson
MH
,
Arnulf
B
, et al
.
Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results
.
Nat Med
.
2023
;
29
(
9
):
2259
-
2267
.
3.
Lee
H
,
Neri
P
,
Bahlis
NJ
.
Current use of bispecific antibodies to treat multiple myeloma
.
Hematol Am Soc Hematol Educ Program
.
2023
;
2023
(
1
):
332
-
339
.
4.
Devasia
AJ
,
Chari
A
,
Lancman
G
.
Bispecific antibodies in the treatment of multiple myeloma
.
Blood Cancer J
.
2024
;
14
(
1
):
158
.
5.
Zhou
X
,
Xiao
X
,
Kortuem
KM
,
Einsele
H
.
Bispecific antibodies in the treatment of multiple myeloma
.
Hematol Oncol Clin North Am
.
2024
;
38
(
2
):
361
-
381
.
6.
Meermeier
EW
,
Bergsagel
PL
,
Chesi
M
.
Next-generation therapies for multiple myeloma
.
Annu Rev Cancer Biol
.
2024
;
8
:
351
-
371
.
7.
Sanchez
E
,
Smith
EJ
,
Yashar
MA
, et al
.
The role of B-cell maturation antigen in the biology and management of, and as a potential therapeutic target in, multiple myeloma
.
Target Oncol
.
2018
;
13
(
1
):
39
-
47
.
8.
Lee
H
,
Durante
M
,
Skerget
S
, et al
.
Impact of soluble BCMA and non-T-cell factors on refractoriness to BCMA-targeting T-cell engagers in multiple myeloma
.
Blood
.
2024
;
144
(
25
):
2637
-
2651
.
9.
Cortes-Selva
D
,
Perova
T
,
Skerget
S
, et al
.
Correlation of immune fitness with response to teclistamab in relapsed/refractory multiple myeloma in the MajesTEC-1 study
.
Blood
.
2024
;
144
(
6
):
615
-
628
.
10.
Duell
J
,
Dittrich
M
,
Bedke
T
, et al
.
Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL
.
Leukemia
.
2017
;
31
(
10
):
2181
-
2190
.
11.
Girgis
S
,
Wang Lin
SX
,
Pillarisetti
K
, et al
.
Effects of teclistamab and talquetamab on soluble BCMA levels in patients with relapsed/refractory multiple myeloma
.
Blood Adv
.
2023
;
7
(
4
):
644
-
648
.
12.
Meermeier
EW
,
Welsh
SJ
,
Sharik
ME
, et al
.
Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy
.
Blood Cancer Discov
.
2021
;
2
(
4
):
354
-
369
.
13.
Rees
MJ
,
Mammadzadeh
A
,
Bolarinwa
A
, et al
.
Clinical features associated with poor response and early relapse following BCMA-directed therapies in multiple myeloma
.
Blood Cancer J
.
2024
;
14
(
1
):
122
.
14.
Riedhammer
C
,
Düll
J
,
Kestler
C
, et al
.
Dismal prognosis of Pneumocystis jirovecii pneumonia in patients with multiple myeloma
.
Ann Hematol
.
2024
;
103
(
4
):
1327
-
1332
.
15.
Casey
M
,
Lee
C
,
Kwok
WY
, et al
.
Regulatory T cells hamper the efficacy of T-cell-engaging bispecific antibody therapy
.
Haematologica
.
2024
;
109
(
3
):
787
-
798
.
16.
Verkleij
CPM
,
O'Neill
CA
,
Broekmans
MEC
, et al
.
T-cell characteristics impact response and resistance to T-cell-redirecting bispecific antibodies in multiple myeloma
.
Clin Cancer Res
.
2024
;
30
(
14
):
3006
-
3022
.
17.
Robinson
MH
,
Villa
NY
,
Jaye
DL
, et al
.
Regulation of antigen-specific T cell infiltration and spatial architecture in multiple myeloma and premalignancy
.
J Clin Invest
.
2023
;
133
(
15
):
e167629
.
18.
Amatangelo
M
,
Flynt
E
,
Stong
N
, et al
.
Pharmacodynamic changes in tumor and immune cells drive iberdomide's clinical mechanisms of activity in relapsed and refractory multiple myeloma
.
Cell Rep Med
.
2024
;
5
(
6
):
101571
.
19.
Lonial
S
,
Popat
R
,
Hulin
C
, et al
.
Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial
.
Lancet Haematol
.
2022
;
9
(
11
):
e822
-
e832
.
20.
Matyskiela
ME
,
Zhang
W
,
Man
HW
, et al
.
A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos
.
J Med Chem
.
2018
;
61
(
2
):
535
-
542
.
21.
Van Oekelen
O
,
Amatangelo
M
,
Guo
M
, et al
.
Iberdomide increases innate and adaptive immune cell subsets in the bone marrow of patients with relapsed/refractory multiple myeloma
.
Cell Rep Med
.
2024
;
5
(
6
):
101584
.
22.
Maura
F
,
Coffey
DG
,
Stein
CK
, et al
.
The genomic landscape of Vk∗MYC myeloma highlights shared pathways of transformation between mice and humans
.
Nat Commun
.
2024
;
15
(
1
):
3844
.
23.
Cowan
AJ
,
Pont
MJ
,
Sather
BD
, et al
.
γ-Secretase inhibitor in combination with BCMA chimeric antigen receptor T-cell immunotherapy for individuals with relapsed or refractory multiple myeloma: a phase 1, first-in-human trial
.
Lancet Oncol
.
2023
;
24
(
7
):
811
-
822
.
24.
Coffey
DG
,
Atilla
PA
,
Atilla
E
, et al
.
Single-cell analysis of the multiple myeloma microenvironment after γ-secretase inhibition and CAR T-cell therapy
.
Blood
.
2025
;
145
(
2
):
220
-
233
.
25.
Yuen
E
,
Posada
M
,
Smith
C
, et al
.
Evaluation of the effects of an oral notch inhibitor, crenigacestat (LY3039478), on QT interval, and bioavailability studies conducted in healthy subjects
.
Cancer Chemother Pharmacol
.
2019
;
83
(
3
):
483
-
492
.
26.
Doi
T
,
Tajimi
M
,
Mori
J
, et al
.
A phase 1 study of crenigacestat (LY3039478), the Notch inhibitor, in Japanese patients with advanced solid tumors
.
Invest New Drugs
.
2021
;
39
(
2
):
469
-
476
.
27.
Welsh
SJ
,
Barwick
BG
,
Meermeier
EW
, et al
.
Transcriptional heterogeneity overcomes super-enhancer disrupting drug combinations in multiple myeloma
.
Blood Cancer Discov
.
2024
;
5
(
1
):
34
-
55
.
28.
Bai
A
,
Hu
H
,
Yeung
M
,
Chen
J
.
Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription
.
J Immunol
.
2007
;
178
(
12
):
7632
-
7639
.
29.
Carlson
CM
,
Endrizzi
BT
,
Wu
J
, et al
.
Kruppel-like factor 2 regulates thymocyte and T-cell migration
.
Nature
.
2006
;
442
(
7100
):
299
-
302
.
30.
Schafer
PH
,
Gandhi
AK
,
Loveland
MA
, et al
.
Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs
.
J Pharmacol Exp Ther
.
2003
;
305
(
3
):
1222
-
1232
.
31.
Noonan
K
,
Rudraraju
L
,
Ferguson
A
, et al
.
Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses
.
Clin Cancer Res
.
2012
;
18
(
5
):
1426
-
1434
.
32.
LeBlanc
R
,
Hideshima
T
,
Catley
LP
, et al
.
Immunomodulatory drug costimulates T cells via the B7-CD28 pathway
.
Blood
.
2004
;
103
(
5
):
1787
-
1790
.
33.
Nikolich-Žugich
J
.
The twilight of immunity: emerging concepts in aging of the immune system
.
Nat Immunol
.
2018
;
19
(
1
):
10
-
19
.
You do not currently have access to this content.
Sign in via your Institution