• Whole-exome sequencing demonstrates that genomic data can enhance the prediction of progression from asymptomatic to symptomatic disease.

  • Patients with IgM-MGUS display 2 genetically distinct entities, with “benign” and “WM-like” genomic features.

Abstract

Immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (IgM-MGUS) and asymptomatic Waldenström macroglobulinemia (WM; aWM) are precursor conditions of symptomatic WM with an annual 1.5% to 12% risk of progression. Although clinical prognostic models exist for risk stratification, it remains challenging to distinguish asymptomatic patients who will eventually progress from those who will not. Hence, the characterization of genomic features that shape disease progressors could potentially improve risk stratification. We performed whole-exome sequencing on 229 samples from 139 patients, including 9 patients with sequential samples. We observed an increasing mutation burden through the stages of disease evolution. Genes such as CD79B, ARID1A, and CREBBP were more often mutated in the aWM progressed (aWMpr) compared with the stable aWM (aWMst) group, whereas MYD88L265 variant allele frequency was significantly higher in patients with aWMpr than those with aWMst. In addition, patients with IgM-MGUS with MYD88WT genotype showed a distinct genomic profile compared with the MYD88MUT patients. Furthermore, the presence of more aneuploidies showed a significant association with a higher risk of progression to the symptomatic disease. Overall, our study shows that genomic profiling of patients’ tumor at the time of aWM diagnosis might represent an improved strategy for identifying patients at high risk to progression who could benefit from earlier intervention.

1.
Owen
RG
,
Treon
SP
,
Al-Katib
A
, et al
.
Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia
.
Semin Oncol
.
2003
;
30
(
2
):
110
-
115
.
2.
Campo
E
,
Swerdlow
SH
,
Harris
NL
,
Pileri
S
,
Stein
H
,
Jaffe
ES
.
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications
.
Blood
.
2011
;
117
(
19
):
5019
-
5032
.
3.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia
.
N Engl J Med
.
2012
;
367
(
9
):
826
-
833
.
4.
Hunter
ZR
,
Xu
L
,
Yang
G
, et al
.
The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis
.
Blood
.
2014
;
123
(
11
):
1637
-
1646
.
5.
Treon
SP
,
Cao
Y
,
Xu
L
,
Yang
G
,
Liu
X
,
Hunter
ZR
.
Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia
.
Blood
.
2014
;
123
(
18
):
2791
-
2796
.
6.
Forgeard
N
,
Baron
M
,
Caron
J
, et al
.
Inflammation in Waldenström macroglobulinemia is associated with 6q deletion and need for treatment initiation
.
Haematologica
.
2022
;
107
(
11
):
2720
-
2724
.
7.
Hunter
ZR
,
Xu
L
,
Tsakmaklis
N
, et al
.
Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia
.
Blood Adv
.
2018
;
2
(
21
):
2937
-
2946
.
8.
Maclachlan
KH
,
Bagratuni
T
,
Kastritis
E
, et al
.
Waldenström macroglobulinemia whole genome reveals prolonged germinal center activity and late copy number aberrations
.
Blood Adv
.
2023
;
7
(
6
):
971
-
981
.
9.
Varettoni
M
,
Zibellini
S
,
Defrancesco
I
, et al
.
Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance
.
Haematologica
.
2017
;
102
(
12
):
2077
-
2085
.
10.
Hunter
ZR
,
Xu
L
,
Yang
G
, et al
.
Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia
.
Blood
.
2016
;
128
(
6
):
827
-
838
.
11.
Bagratuni
T
,
Aktypi
F
,
Theologi
O
, et al
.
Single-cell analysis of MYD88(L265P) and MYD88(WT) Waldenström macroglobulinemia patients
.
Hemasphere
.
2024
;
8
(
2
):
e27
.
12.
Deguine
J
,
Barton
GM
.
MyD88: a central player in innate immune signaling
.
F1000Prime Rep
.
2014
;
6
:
97
.
13.
Fitzgerald
KA
,
Kagan
JC
.
Toll-like receptors and the control of immunity
.
Cell
.
2020
;
180
(
6
):
1044
-
1066
.
14.
Munshi
M
,
Liu
X
,
Kofides
A
, et al
.
A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas
.
Blood Adv
.
2022
;
6
(
11
):
3332
-
3338
.
15.
Munshi
M
,
Liu
X
,
Chen
JG
, et al
.
SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas
.
Blood Cancer J
.
2020
;
10
(
1
):
12
.
16.
Sklavenitis-Pistofidis
R
,
Konishi
Y
,
Heilpern-Mallory
D
, et al
.
Single-cell RNA sequencing defines distinct disease subtypes and reveals hypo-responsiveness to interferon in asymptomatic Waldenstrom’s macroglobulinemia
.
Nat Commun
.
2025
;
16
(
1
):
1480
.
17.
Sun
H
,
Fang
T
,
Wang
T
, et al
.
Single-cell profiles reveal tumor cell heterogeneity and immunosuppressive microenvironment in Waldenström macroglobulinemia
.
J Transl Med
.
2022
;
20
(
1
):
576
.
18.
Kyle
RA
,
Benson
JT
,
Larson
DR
, et al
.
Progression in smoldering Waldenstrom macroglobulinemia: long-term results
.
Blood
.
2012
;
119
(
19
):
4462
-
4466
.
19.
Kyle
RA
,
Therneau
TM
,
Rajkumar
SV
, et al
.
Long-term follow-up of IgM monoclonal gammopathy of undetermined significance
.
Semin Oncol
.
2003
;
30
(
2
):
169
-
171
.
20.
Kyle
RA
,
Rajkumar
SV
.
Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma
.
Curr Hematol Malig Rep
.
2010
;
5
(
2
):
62
-
69
.
21.
Paiva
B
,
Montes
MC
,
García-Sanz
R
, et al
.
Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification
.
Leukemia
.
2014
;
28
(
1
):
166
-
173
.
22.
Treon
SP
,
Hunter
ZR
,
Aggarwal
A
, et al
.
Characterization of familial Waldenstrom’s macroglobulinemia
.
Ann Oncol
.
2006
;
17
(
3
):
488
-
494
.
23.
Poulain
S
,
Braggio
E
,
Roumier
C
, et al
.
High-throughput genomic analysis in Waldenström’s macroglobulinemia
.
Clin Lymphoma Myeloma Leuk
.
2011
;
11
(
1
):
106
-
108
.
24.
Braggio
E
,
Philipsborn
C
,
Novak
A
,
Hodge
L
,
Ansell
S
,
Fonseca
R
.
Molecular pathogenesis of Waldenstrom’s macroglobulinemia
.
Haematologica
.
2012
;
97
(
9
):
1281
-
1290
.
25.
Paiva
B
,
Corchete
LA
,
Vidriales
MB
, et al
.
The cellular origin and malignant transformation of Waldenström macroglobulinemia
.
Blood
.
2015
;
125
(
15
):
2370
-
2380
.
26.
San Miguel
JF
,
Vidriales
MB
,
Ocio
E
, et al
.
Immunophenotypic analysis of Waldenstrom’s macroglobulinemia
.
Semin Oncol
.
2003
;
30
(
2
):
187
-
195
.
27.
Morice
WG
,
Chen
D
,
Kurtin
PJ
,
Hanson
CA
,
McPhail
ED
.
Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström’s macroglobulinemia
.
Mod Pathol
.
2009
;
22
(
6
):
807
-
816
.
28.
Remstein
ED
,
Hanson
CA
,
Kyle
RA
,
Hodnefield
JM
,
Kurtin
PJ
.
Despite apparent morphologic and immunophenotypic heterogeneity, Waldenstrom’s macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells
.
Semin Oncol
.
2003
;
30
(
2
):
182
-
186
.
29.
Ishwaran
H
,
Kogalur
U
,
Blackstone
E
,
Lauer
M
.
Random Survival Forests
.
Ann Appl Stat
.
2008
;
2
(
3
):
841
-
860
.
30.
Martincorena
I
,
Raine
KM
,
Gerstung
M
, et al
.
Universal patterns of selection in cancer and somatic tissues
.
Cell
.
2017
;
171
(
5
):
1029
-
1041.e21
.
31.
Rustad
EH
,
Nadeu
F
,
Angelopoulos
N
, et al
.
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
.
Commun Biol
.
2021
;
4
(
1
):
424
.
32.
Xu
L
,
Hunter
ZR
,
Yang
G
, et al
.
MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction
.
Blood
.
2013
;
121
(
11
):
2051
-
2058
.
33.
Bagratuni
T
,
Markou
A
,
Patseas
D
, et al
.
Determination of MYD88L265P mutation fraction in IgM monoclonal gammopathies
.
Blood Adv
.
2022
;
6
(
1
):
189
-
199
.
34.
Bustoros
M
,
Sklavenitis-Pistofidis
R
,
Kapoor
P
, et al
.
Progression risk stratification of asymptomatic Waldenström macroglobulinemia
.
J Clin Oncol
.
2019
;
37
(
16
):
1403
-
1411
.
35.
Li
Y
,
Liu
L
,
Sun
H
, et al
.
Complete remission of Hodgkin’s lymphoma in a pediatric patient with TTN gene mutation treated with brentuximab vedotin combined chemotherapy without anthracyclines: a case report
.
Front Oncol
.
2022
;
12
:
1006166
.
36.
Oh
JH
,
Jang
SJ
,
Kim
J
, et al
.
Spontaneous mutations in the single TTN gene represent high tumor mutation burden
.
NPJ Genom Med
.
2020
;
5
:
33
.
37.
Alouche
N
,
Bonaud
A
,
Rondeau
V
, et al
.
Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response
.
Blood
.
2021
;
137
(
22
):
3050
-
3063
.
38.
Poulain
S
,
Roumier
C
,
Venet-Caillault
A
, et al
.
Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia
.
Clin Cancer Res
.
2016
;
22
(
6
):
1480
-
1488
.
39.
Gustine
JN
,
Xu
L
,
Yang
G
, et al
.
Bone marrow involvement and subclonal diversity impairs detection of mutated CXCR4 by diagnostic next-generation sequencing in Waldenström macroglobulinaemia
.
Br J Haematol
.
2021
;
194
(
4
):
730
-
733
.
40.
Cao
Y
,
Hunter
ZR
,
Liu
X
, et al
.
CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P)-directed survival signalling in Waldenström macroglobulinaemia cells
.
Br J Haematol
.
2015
;
168
(
5
):
701
-
707
.
41.
Cao
Y
,
Hunter
ZR
,
Liu
X
, et al
.
The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia
.
Leukemia
.
2015
;
29
(
1
):
169
-
176
.
You do not currently have access to this content.
Sign in via your Institution