• Plg transports host and nonhost small RNA.

  • Plg’s sRNA cargo helps to regulate its immunogenicity and enzymatic functions.

Abstract

Cell-free RNA (cf-RNA) has emerged as a critical mediator of intercellular communication and a potential regulator of hemostasis. In this study, plasminogen (Plg), the zymogen precursor of plasmin, was demonstrated to function as a secreted ribonucleoprotein that carries regulatory, extracellular small noncoding RNAs (sRNAs). Purified human and bovine Plg, isolated via lysine-affinity chromatography, were found to transport 25- to 60-nucleotide–long sRNAs derived from both host and microbial sources. In vitro studies revealed that Plg accepted sRNA cargo from primary macrophages and bound candidate sRNAs with moderate (micromolar) affinity. Notably, Plg-sRNA complexes exhibited a distinct RNA profile compared to high-density lipoproteins, and their compositions were sensitive to hypercholesterolemic conditions. Functionally, removal of sRNA cargo from Plg via ribonuclease digestion significantly increased plasmin enzymatic activity and accelerated clot lysis, while also attenuating Plg-induced proinflammatory cytokine expression in both mouse and human macrophages. These findings reveal a dual regulatory role for sRNAs in modulating both the fibrinolytic and immunogenic properties of Plg, offering novel insights into the cross talk between cf-RNA biology and coagulation pathways. This work positions Plg-sRNA interactions as promising targets for therapeutic intervention in thrombotic and inflammatory diseases.

1.
Patton
JG
,
Franklin
JL
,
Weaver
AM
, et al
.
Biogenesis, delivery, and function of extracellular RNA
.
J Extracell Vesicles
.
2015
;
4
:
27494
.
2.
Vickers
KC
,
Palmisano
BT
,
Shoucri
BM
,
Shamburek
RD
,
Remaley
AT
.
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
.
Nat Cell Biol
.
2011
;
13
(
4
):
423
-
433
.
3.
Allen
RM
,
Michell
DL
,
Cavnar
AB
, et al
.
LDL delivery of microbial small RNAs drives atherosclerosis through macrophage TLR8
.
Nat Cell Biol
.
2022
;
24
(
12
):
1701
-
1713
.
4.
Zhang
Q
,
Higginbotham
JN
,
Jeppesen
DK
, et al
.
Transfer of functional cargo in exomeres
.
Cell Rep
.
2019
;
27
(
3
):
940
-
954.e6
.
5.
Zhang
Q
,
Jeppesen
DK
,
Higginbotham
JN
, et al
.
Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets
.
Nat Cell Biol
.
2021
;
23
(
12
):
1240
-
1254
.
6.
Fabbri
M
,
Paone
A
,
Calore
F
,
Galli
R
,
Croce
CM
.
A new role for microRNAs, as ligands of Toll-like receptors
.
RNA Biol
.
2013
;
10
(
2
):
169
-
174
.
7.
Allen
RM
,
Zhao
S
,
Ramirez Solano
MA
, et al
.
Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins
.
J Extracell Vesicles
.
2018
;
7
(
1
):
1506198
.
8.
Michell
DL
,
Zhao
S
,
Allen
RM
,
Sheng
Q
,
Vickers
KC
.
Pervasive small RNAs in cardiometabolic research: great potential accompanied by biological and technical barriers
.
Diabetes
.
2020
;
69
(
5
):
813
-
822
.
9.
Vickers
KC
,
Remaley
AT
.
Lipid-based carriers of microRNAs and intercellular communication
.
Curr Opin Lipidol
.
2012
;
23
(
2
):
91
-
97
.
10.
Vickers
KC
,
Roteta
LA
,
Hucheson-Dilks
H
,
Han
L
,
Guo
Y
.
Mining diverse small RNA species in the deep transcriptome
.
Trends Biochem Sci
.
2015
;
40
(
1
):
4
-
7
.
11.
Vickers
KC
,
Sethupathy
P
,
Baran-Gale
J
,
Remaley
AT
.
The complexity of microRNA function and the role of isomiRs in lipid homeostasis
.
J Lipid Res
.
2013
;
54
(
5
):
1182
-
1191
.
12.
Wang
K
,
Li
H
,
Yuan
Y
, et al
.
The complex exogenous RNA spectra in human plasma: an interface with human gut biota?
.
PLoS One
.
2012
;
7
(
12
):
e51009
.
13.
Castleberry
M
,
Raby
CA
,
Ifrim
A
, et al
.
High-density lipoproteins mediate small RNA intercellular communication between dendritic cells and macrophages
.
J Lipid Res
.
2023
;
64
(
2
):
100328
.
14.
Fabbri
M
,
Paone
A
,
Calore
F
, et al
.
MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
31
):
E2110
-
E2116
.
15.
Choteau
SA
,
Cuesta Torres
LF
,
Barraclough
JY
, et al
.
Transcoronary gradients of HDL-associated MicroRNAs in unstable coronary artery disease
.
Int J Cardiol
.
2018
;
253
:
138
-
144
.
16.
Cuesta Torres
LF
,
Zhu
W
,
Öhrling
G
, et al
.
High-density lipoproteins induce miR-223-3p biogenesis and export from myeloid cells: Role of scavenger receptor BI-mediated lipid transfer
.
Atherosclerosis
.
2019
;
286
:
20
-
29
.
17.
Tabet
F
,
Vickers
KC
,
Cuesta Torres
LF
, et al
.
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
.
Nat Commun
.
2014
;
5
:
3292
.
18.
Alharbi
A
,
Iyer
N
,
Al Qaryoute
A
, et al
.
Role of ribosomal RNA released from red cells in blood coagulation in zebrafish and humans
.
Blood Adv
.
2021
;
5
(
22
):
4634
-
4647
.
19.
Kannemeier
C
,
Shibamiya
A
,
Nakazawa
F
, et al
.
Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
15
):
6388
-
6393
.
20.
Najem
MY
,
Rys
RN
,
Laurance
S
, et al
.
Extracellular RNA induces neutrophil recruitment via toll-like receptor 3 during venous thrombosis after vascular injury
.
J Am Heart Assoc
.
2024
;
13
(
15
):
e034492
.
21.
Sugimoto
MA
,
Ribeiro
ALC
,
Costa
BRC
, et al
.
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1
.
Blood
.
2017
;
129
(
21
):
2896
-
2907
.
22.
Syrovets
T
,
Jendrach
M
,
Rohwedder
A
,
Schüle
A
,
Simmet
T
.
Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation
.
Blood
.
2001
;
97
(
12
):
3941
-
3950
.
23.
Syrovets
T
,
Lunov
O
,
Simmet
T
.
Plasmin as a proinflammatory cell activator
.
J Leukoc Biol
.
2012
;
92
(
3
):
509
-
519
.
24.
Whyte
CS
,
Morrow
GB
,
Baik
N
, et al
.
Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets
.
Blood
.
2021
;
137
(
2
):
248
-
257
.
25.
Nikpay
M
,
Goel
A
,
Won
HH
, et al
.
A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease
.
Nat Genet
.
2015
;
47
(
10
):
1121
-
1130
.
26.
Folsom
AR
,
Aleksic
N
,
Park
E
,
Salomaa
V
,
Juneja
H
,
Wu
KK
.
Prospective study of fibrinolytic factors and incident coronary heart disease: the atherosclerosis risk in communities (ARIC) study
.
Arterioscler Thromb Vasc Biol
.
2001
;
21
(
4
):
611
-
617
.
27.
van der Harst
P
,
Verweij
N
.
Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
.
Circ Res
.
2018
;
122
(
3
):
433
-
443
.
28.
Iwaki
T
,
Arakawa
T
,
Sandoval-Cooper
MJ
, et al
.
Plasminogen deficiency significantly reduces vascular wall disease in a murine model of type IIa hypercholesterolemia
.
Biomedicines
.
2021
;
9
(
12
):
1832
.
29.
Moons
L
,
Shi
C
,
Ploplis
V
, et al
.
Reduced transplant arteriosclerosis in plasminogen-deficient mice
.
J Clin Invest
.
1998
;
102
(
10
):
1788
-
1797
.
30.
Kremen
M
,
Krishnan
R
,
Emery
I
, et al
.
Plasminogen mediates the atherogenic effects of macrophage-expressed urokinase and accelerates atherosclerosis in apoE-knockout mice
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
44
):
17109
-
17114
.
31.
Deloukas
P
,
Kanoni
S
,
Willenborg
C
, et al
.
Large-scale association analysis identifies new risk loci for coronary artery disease
.
Nat Genet
.
2013
;
45
(
1
):
25
-
33
.
32.
Pamir
N
,
Hutchins
PM
,
Ronsein
GE
, et al
.
Plasminogen promotes cholesterol efflux by the ABCA1 pathway
.
JCI Insight
.
2017
;
2
(
15
):
e92176
.
33.
Edelstein
C
,
Pfaffinger
D
,
Yang
M
,
Hill
JS
,
Scanu
AM
.
Naturally occurring human plasminogen, like genetically related apolipoprotein(a), contains oxidized phosphatidylcholine adducts
.
Biochim Biophys Acta
.
2010
;
1801
(
7
):
738
-
745
.
34.
Edelstein
C
,
Pfaffinger
D
,
Reichert
EC
,
Stafforini
DM
,
Scanu
AM
.
Mouse plasminogen has oxidized phosphatidylcholine adducts that are not metabolized by lipoprotein-associated phospholipase A2under basal conditions
.
Int J Mol Sci
.
2010
;
11
(
12
):
5339
-
5347
.
35.
DeFilippis
AP
,
Chernyavskiy
I
,
Amraotkar
AR
, et al
.
Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction
.
J Thromb Thrombolysis
.
2016
;
42
(
1
):
61
-
76
.
36.
Michell
DL
,
Allen
RM
,
Cavnar
AB
, et al
.
Elucidation of physico-chemical principles of high-density lipoprotein-small RNA binding interactions
.
J Biol Chem
.
2022
;
298
(
6
):
101952
.
37.
Das
R
,
Ganapathy
S
,
Settle
M
,
Plow
EF
.
Plasminogen promotes macrophage phagocytosis in mice
.
Blood
.
2014
;
124
(
5
):
679
-
688
.
38.
Kato
H
,
Adachi
N
,
Ohno
Y
,
Iwanaga
S
,
Takada
K
,
Sakakibara
S
.
New fluorogenic peptide substrates for plasmin
.
J Biochem
.
1980
;
88
(
1
):
183
-
190
.
39.
Leibundgut
G
,
Arai
K
,
Orsoni
A
, et al
.
Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction
.
J Am Coll Cardiol
.
2012
;
59
(
16
):
1426
-
1437
.
40.
Shen
Y
,
Guo
Y
,
Mikus
P
, et al
.
Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds
.
Blood
.
2012
;
119
(
24
):
5879
-
5887
.
41.
Shen
Y
,
Guo
Y
,
Wilczynska
M
,
Li
J
,
Hellström
S
,
Ny
T
.
Plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice
.
J Transl Med
.
2014
;
12
:
5
.
42.
Carmo
AA
,
Costa
BRC
,
Vago
JP
, et al
.
Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-MEK/ERK-and CCR2-mediated signaling
.
J Immunol
.
2014
;
193
(
7
):
3654
-
3663
.
43.
Gibson
BHY
,
Wollenman
CC
,
Moore-Lotridge
SN
, et al
.
Plasmin drives burn-induced systemic inflammatory response syndrome
.
JCI Insight
.
2021
;
6
(
23
):
e154439
.
You do not currently have access to this content.
Sign in via your Institution