• Abnormal platelet function is a hallmark of IBD, where platelets exhibit hypersensitivity to agonists and spontaneous aggregation.

  • Reduced layilin expression contributes to platelet hyperactivation in patients with IBD due to dysregulation of Rho family GTPase Rac1.

Abstract

Platelets are specialized cells for hemostasis which circulate in close contact to the glycocalyx, an extracellular layer of interwoven glycoproteins, proteoglycans, and glycosaminoglycans that maintain vascular homeostasis. Platelets survey their circulating environment, balancing inhibitory signals that prevent inappropriate activation with activating signals that initiate thrombus formation. Disease can disrupt this delicate balance of endogenous inhibitory signaling, leading to an increased risk of thrombosis as in patients with inflammatory bowel disease (IBD). In this study, we demonstrate that physiological concentrations of hyaluronan (HA), an essential component of the glycocalyx, acts as an inhibitor of activation and aggregation in human platelets. Using a combination of affinity chromatography and functional assays of platelets from humans and genetically modified mice, we identify layilin as the receptor for HA and an endogenous inhibitor of platelet activation. Platelets from layilin knockout mice display agonist-induced hyperactivation of αIIbβ3 and increased adhesion to fibrinogen under venous shear. Loss of layilin results in dysregulation of Rho guanosine triphosphatase (GTPase) family members (RAC1, Cdc42, RhoA, and Ras-like Rap1) via layilin’s binding partner, merlin, and downstream p21-activated kinase 1. Furthermore, platelets of patients with IBD contain reduced layilin protein levels correlating with heightened basal Rac1-guanosine triphosphate levels and increased reactivity. Finally, although IBD platelets have enhanced sensitivity to activation, pharmacologic inhibition of RAC1 effectively reduces platelet hyperactivity in platelet of patients with IBD. These findings highlight a novel role for layilin and HA in the maintenance of platelet homeostasis that becomes disrupted in patients with IBD.

1.
Maddineni
G
,
Choday
S
,
Morales
A
, et al
.
Shifts in ibd incidence, mortality, and burden: a comprehensive analysis of US and global trends (1990-2019)
.
Gastroenterology
.
2024
;
166
(
3
):
S54
.
2.
Bruner
LP
,
White
AM
,
Proksell
S
.
Inflammatory bowel disease
.
Prim Care
.
2023
;
50
(
3
):
411
-
427
.
3.
Saez
A
,
Herrero-Fernandez
B
,
Gomez-Bris
R
,
Sánchez-Martinez
H
,
Gonzalez-Granado
JM
.
Pathophysiology of inflammatory bowel disease: innate immune system
.
Int J Mol Sci
.
2023
;
24
(
2
):
1526
.
4.
Cominelli
F
.
Inhibition of leukocyte trafficking in inflammatory bowel disease
.
N Engl J Med
.
2013
;
369
(
8
):
775
-
776
.
5.
Morowitz
DA
,
Allen
LW
,
Kirsner
JB
.
Thrombocytosis in chronic inflammatory bowel disease
.
Ann Intern Med
.
1968
;
68
(
5
):
1013
-
1021
.
6.
Webberley
MJ
,
Hart
MT
,
Melikian
V
.
Thromboembolism in inflammatory bowel disease: role of platelets
.
Gut
.
1993
;
34
(
2
):
247
-
251
.
7.
Collins
CE
,
Cahill
MR
,
Newland
AC
,
Rampton
DS
.
Platelets circulate in an activated state in inflammatory bowel disease
.
Gastroenterology
.
1994
;
106
(
4
):
840
-
845
.
8.
Ananthakrishnan
AN
.
Epidemiology and risk factors for IBD
.
Nat Rev Gastroenterol Hepatol
.
2015
;
12
(
4
):
205
-
217
.
9.
Kassam
Z
,
Belga
S
,
Roifman
I
, et al
.
Inflammatory bowel disease cause-specific mortality: a primer for clinicians
.
Inflamm Bowel Dis
.
2014
;
20
(
12
):
2483
-
2492
.
10.
Talbot
RW
,
Heppell
J
,
Dozois
RR
,
Beart
RW
.
Vascular complications of inflammatory bowel disease
.
Mayo Clin Proc
.
1986
;
61
(
2
):
140
-
145
.
11.
Sloan
WP
,
Bargen
JA
,
Gage
RB
.
Life histories of patients with chronic ulcerative colitis: a review of 2,000 cases
.
Gastroenterology
.
1968
;
54
(
4
):
Suppl:819-822
.
12.
Dhillon
AP
,
Anthony
A
,
Sim
R
, et al
.
Mucosal capillary thrombi in rectal biopsies
.
Histopathology
.
1992
;
21
(
2
):
127
-
133
.
13.
Kasirer-Friede
A
,
Peuhu
E
,
Ivaska
J
,
Shattil
SJ
.
Platelet SHARPIN regulates platelet adhesion and inflammatory responses through associations with alphaIIbbeta3 and LUBAC
.
Blood Adv
.
2022
;
6
(
8
):
2595
-
2607
.
14.
Senchenkova
E
,
Seifert
H
,
Granger
DN
.
Hypercoagulability and platelet abnormalities in inflammatory bowel disease
.
Semin Thromb Hemost
.
2015
;
41
(
6
):
582
-
589
.
15.
Vowinkel
T
,
Wood
KC
,
Stokes
KY
, et al
.
Mechanisms of platelet and leukocyte recruitment in experimental colitis
.
Am J Physiol Gastrointest Liver Physiol
.
2007
;
293
(
5
):
G1054
-
G1060
.
16.
Petrey
AC
,
Obery
DR
,
Kessler
SP
,
Zawerton
A
,
Flamion
B
,
de la Motte
CA
.
Platelet hyaluronidase-2 regulates the early stages of inflammatory disease in colitis
.
Blood
.
2019
;
134
(
9
):
765
-
775
.
17.
Chappell
D
,
Brettner
F
,
Doerfler
N
, et al
.
Protection of glycocalyx decreases platelet adhesion after ischaemia/reperfusion: an animal study
.
Eur J Anaesthesiol
.
2014
;
31
(
9
):
474
-
481
.
18.
Kardeby
C
,
Evans
A
,
Campos
J
, et al
.
Heparin and heparin proteoglycan-mimetics activate platelets via PEAR1 and PI3Kbeta
.
J Thromb Haemost
.
2023
;
21
(
1
):
101
-
116
.
19.
Vögtle
T
,
Sharma
S
,
Mori
J
, et al
.
Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B
.
Elife
.
2019
;
8
:
e46840
.
20.
de la Motte
C
,
Nigro
J
,
Vasanji
A
, et al
.
Platelet-derived hyaluronidase 2 cleaves hyaluronan into fragments that trigger monocyte-mediated production of proinflammatory cytokines
.
Am J Pathol
.
2009
;
174
(
6
):
2254
-
2264
.
21.
de la Motte
CA
,
Hascall
VC
,
Drazba
J
,
Bandyopadhyay
SK
,
Strong
SA
.
Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function
.
Am J Pathol
.
2003
;
163
(
1
):
121
-
133
.
22.
Queisser
KA
,
Mellema
RA
,
Petrey
AC
.
Hyaluronan and its receptors as regulatory molecules of the endothelial interface
.
J Histochem Cytochem
.
2021
;
69
(
1
):
25
-
34
.
23.
Petrey
AC
,
Obery
DR
,
Kessler
SP
,
Flamion
B
,
de la Motte
CA
.
Hyaluronan depolymerization by megakaryocyte hyaluronidase-2 is required for thrombopoiesis
.
Am J Pathol
.
2016
;
186
(
9
):
2390
-
2403
.
24.
Currao
M
,
Malara
A
,
Di Buduo
CA
,
Abbonante
V
,
Tozzi
L
,
Balduini
A
.
Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions
.
Exp Cell Res
.
2016
;
346
(
1
):
1
-
8
.
25.
Zou
D
,
Yuan
Y
,
Xu
L
, et al
.
PltDB: a blood platelets-based gene expression database for disease investigation
.
Bioinformatics
.
2022
;
38
(
11
):
3143
-
3145
.
26.
Bono
P
,
Rubin
K
,
Higgins
JM
,
Hynes
RO
.
Layilin, a novel integral membrane protein, is a hyaluronan receptor
.
Mol Biol Cell
.
2001
;
12
(
4
):
891
-
900
.
27.
Borowsky
ML
,
Hynes
RO
.
Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles
.
J Cell Biol
.
1998
;
143
(
2
):
429
-
442
.
28.
Bono
P
,
Cordero
E
,
Johnson
K
, et al
.
Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin
.
Exp Cell Res
.
2005
;
308
(
1
):
177
-
187
.
29.
Yang
B
,
Deng
B
,
Jiao
XD
, et al
.
Low-dose anti-VEGFR2 therapy promotes anti-tumor immunity in lung adenocarcinoma by down-regulating the expression of layilin on tumor-infiltrating CD8(+)T cells
.
Cell Oncol (Dordr)
.
2022
;
45
(
6
):
1297
-
1309
.
30.
Mehta
P
,
Gouirand
V
,
Boda
DP
, et al
.
Layilin anchors regulatory T cells in skin
.
J Immunol
.
2021
;
207
(
7
):
1763
-
1775
.
31.
Forteza
RM
,
Casalino-Matsuda
SM
,
Falcon
NS
,
Valencia Gattas
M
,
Monzon
ME
.
Hyaluronan and layilin mediate loss of airway epithelial barrier function induced by cigarette smoke by decreasing E-cadherin
.
J Biol Chem
.
2012
;
287
(
50
):
42288
-
42298
.
32.
Kim
Y
,
West
GA
,
Ray
G
, et al
.
Layilin is critical for mediating hyaluronan 35kDa-induced intestinal epithelial tight junction protein ZO-1 in vitro and in vivo
.
Matrix Biol
.
2018
;
66
:
93
-
109
.
33.
Wang
Q
,
Chi
J
,
Zeng
W
, et al
.
Discovery of crucial cytokines associated with deep vein thrombus formation by protein array analysis
.
BMC Cardiovasc Disord
.
2024
;
24
(
1
):
374
.
34.
Moore
KH
,
Murphy
HA
,
George
EM
.
The glycocalyx: a central regulator of vascular function
.
Am J Physiol Regul Integr Comp Physiol
.
2021
;
320
(
4
):
R508
-
R518
.
35.
Queisser
KA
,
Mellema
RA
,
Middleton
EA
, et al
.
COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction
.
JCI Insight
.
2021
;
6
(
17
):
e147472
.
36.
Verheye
S
,
Markou
CP
,
Salame
MY
, et al
.
Reduced thrombus formation by hyaluronic acid coating of endovascular devices
.
Arterioscler Thromb Vasc Biol
.
2000
;
20
(
4
):
1168
-
1172
.
37.
Britten
MW
,
Lümers
L
,
Tominaga
K
,
Peters
J
,
Dirkmann
D
.
Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy
.
BMC Anesthesiol
.
2021
;
21
(
1
):
83
.
38.
Albeiroti
S
,
Ayasoufi
K
,
Hill
DR
,
Shen
B
,
de la Motte
CA
.
Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation
.
Blood
.
2015
;
125
(
9
):
1460
-
1469
.
39.
Mahuron
KM
,
Moreau
JM
,
Glasgow
JE
, et al
.
Layilin augments integrin activation to promote antitumor immunity
.
J Exp Med
.
2020
;
217
(
9
):
e20192080
.
40.
Huang
J
,
Li
X
,
Shi
X
, et al
.
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
.
J Hematol Oncol
.
2019
;
12
(
1
):
26
.
41.
Sun
Z
,
Costell
M
,
Fässler
R
.
Integrin activation by talin, kindlin and mechanical forces
.
Nat Cell Biol
.
2019
;
21
(
1
):
25
-
31
.
42.
Wegener
KL
,
Basran
J
,
Bagshaw
CR
, et al
.
Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain
.
J Mol Biol
.
2008
;
382
(
1
):
112
-
126
.
43.
Pinon
P
,
Pärssinen
J
,
Vazquez
P
, et al
.
Talin-bound NPLY motif recruits integrin-signaling adapters to regulate cell spreading and mechanosensing
.
J Cell Biol
.
2014
;
205
(
2
):
265
-
281
.
44.
LeBoeuf
RD
,
Raja
RH
,
Fuller
GM
,
Weigel
PH
.
Human fibrinogen specifically binds hyaluronic acid
.
J Biol Chem
.
1986
;
261
(
27
):
12586
-
12592
.
45.
Frost
SJ
,
Weigel
PH
.
Binding of hyaluronic acid to mammalian fibrinogens
.
Biochim Biophys Acta
.
1990
;
1034
(
1
):
39
-
45
.
46.
Weigel
PH
,
Frost
SJ
,
LeBoeuf
RD
,
McGary
CT
.
The specific interaction between fibrin(ogen) and hyaluronan: possible consequences in haemostasis, inflammation and wound healing
.
Ciba Found Symp
.
1989
;
143
:
248
-
261
.
47.
Pacher
R
,
Frass
M
,
Hartter
E
,
Woloszczuk
W
,
Leithner
C
.
Continuous pump-driven hemofiltration associated with a decline in alpha-atrial natriuretic peptide
.
Crit Care Med
.
1986
;
14
(
12
):
1010
-
1014
.
48.
Aslan
JE
,
Baker
SM
,
Loren
CP
, et al
.
The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation
.
Am J Physiol Cell Physiol
.
2013
;
305
(
5
):
C519
-
C528
.
49.
Onesto
C
,
Shutes
A
,
Picard
V
,
Schweighoffer
F
,
Der
CJ
.
Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases
.
Methods Enzymol
.
2008
;
439
:
111
-
129
.
50.
Stefanini
L
,
Boulaftali
Y
,
Ouellette
TD
, et al
.
Rap1-Rac1 circuits potentiate platelet activation
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
2
):
434
-
441
.
51.
Maeda
M
,
Matsui
T
,
Imamura
M
,
Tsukita
S
,
Tsukita
S
.
Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins
.
Oncogene
.
1999
;
18
(
34
):
4788
-
4797
.
52.
Manetti
ME
,
Geden
S
,
Bott
M
,
Sparrow
N
,
Lambert
S
,
Fernandez-Valle
C
.
Stability of the tumor suppressor merlin depends on its ability to bind paxillin LD3 and associate with beta1 integrin and actin at the plasma membrane
.
Biol Open
.
2012
;
1
(
10
):
949
-
957
.
53.
Xiao
GH
,
Beeser
A
,
Chernoff
J
,
Testa
JR
.
p21-activated kinase links Rac/Cdc42 signaling to merlin
.
J Biol Chem
.
2002
;
277
(
2
):
883
-
886
.
54.
Cui
Y
,
Groth
S
,
Troutman
S
, et al
.
The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling
.
Oncogene
.
2019
;
38
(
36
):
6370
-
6381
.
55.
Lagarrigue
F
,
Paul
DS
,
Gingras
AR
, et al
.
Talin-1 is the principal platelet Rap1 effector of integrin activation
.
Blood
.
2020
;
136
(
10
):
1180
-
1190
.
56.
Stefanini
L
,
Lee
RH
,
Paul
DS
, et al
.
Functional redundancy between RAP1 isoforms in murine platelet production and function
.
Blood
.
2018
;
132
(
18
):
1951
-
1962
.
57.
Cheng
K
,
Faye
AS
.
Venous thromboembolism in inflammatory bowel disease
.
World J Gastroenterol
.
2020
;
26
(
12
):
1231
-
1241
.
58.
Collins
CE
,
Rampton
DS
,
Rogers
J
,
Williams
NS
.
Platelet aggregation and neutrophil sequestration in the mesenteric circulation in inflammatory bowel disease
.
Eur J Gastroenterol Hepatol
.
1997
;
9
(
12
):
1213
-
1217
.
59.
Senchenkova
EY
,
Komoto
S
,
Russell
J
, et al
.
Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis
.
Am J Pathol
.
2013
;
183
(
1
):
173
-
181
.
60.
Dütting
S
,
Heidenreich
J
,
Cherpokova
D
, et al
.
Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets
.
J Thromb Haemost
.
2015
;
13
(
5
):
827
-
838
.
61.
Tsukita
S
,
Yonemura
S
.
ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction
.
Curr Opin Cell Biol
.
1997
;
9
(
1
):
70
-
75
.
62.
Ivetic
A
,
Ridley
AJ
.
Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes
.
Immunology
.
2004
;
112
(
2
):
165
-
176
.
63.
Bai
Y
,
Liu
YJ
,
Wang
H
,
Xu
Y
,
Stamenkovic
I
,
Yu
Q
.
Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin
.
Oncogene
.
2007
;
26
(
6
):
836
-
850
.
64.
McFarlane
S
,
McFarlane
C
,
Montgomery
N
,
Hill
A
,
Waugh
DJ
.
CD44-mediated activation of alpha5beta1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices
.
Oncotarget
.
2015
;
6
(
34
):
36762
-
36773
.
65.
Banerji
S
,
Wright
AJ
,
Noble
M
, et al
.
Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction
.
Nat Struct Mol Biol
.
2007
;
14
(
3
):
234
-
239
.
66.
Trivigno
SMG
,
Vismara
M
,
Canobbio
I
, et al
.
The C-type lectin receptor CD93 regulates platelet activation and surface expression of the protease activated receptor 4
.
Thromb Haemost
.
2024
;
124
(
2
):
122
-
134
.
67.
Kissil
JL
,
Wilker
EW
,
Johnson
KC
,
Eckman
MS
,
Yaffe
MB
,
Jacks
T
.
Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1
.
Mol Cell
.
2003
;
12
(
4
):
841
-
849
.
68.
Shaw
RJ
,
Paez
JG
,
Curto
M
, et al
.
The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling
.
Dev Cell
.
2001
;
1
(
1
):
63
-
72
.
69.
Arito
M
,
Tsutiya
A
,
Sato
M
, et al
.
Role of layilin in regulating mitochondria-mediated apoptosis: a study on B cell lymphoma (BCL)-2 family proteins
.
BMC Mol Cell Biol
.
2024
;
25
(
1
):
24
.
70.
Tsutiya
A
,
Arito
M
,
Tagashira
T
, et al
.
Layilin promotes mitochondrial fission by cyclin-dependent kinase 1 and dynamin-related protein 1 activation in HEK293T cells
.
Biochem Biophys Res Commun
.
2021
;
549
:
143
-
149
.
71.
Glasgow
JE
,
Byrnes
JR
,
Barbee
SD
,
Moreau
JM
,
Rosenblum
MD
,
Wells
JA
.
Identifying and antagonizing the interactions between layilin and glycosylated collagens
.
Cell Chem Biol
.
2022
;
29
(
4
):
597
-
604.e7
.
72.
Seinen
ML
,
van Nieuw Amerongen
GP
,
de Boer
NK
,
van Bodegraven
AA
.
Rac attack: modulation of the small GTPase Rac in inflammatory bowel disease and thiopurine therapy
.
Mol Diagn Ther
.
2016
;
20
(
6
):
551
-
557
.
73.
Haag
LM
,
Siegmund
B
.
Epithelial RAC1 niches in IBD: from barrier integrity to cytoskeletal plasticity
.
Gut
.
2023
;
72
(
2
):
219
-
220
.
74.
Guo
Y
,
Xiong
J
,
Wang
J
,
Wen
J
,
Zhi
F
.
Inhibition of Rac family protein impairs colitis and colitis-associated cancer in mice
.
Am J Cancer Res
.
2018
;
8
(
1
):
70
-
80
.
You do not currently have access to this content.
Sign in via your Institution