• NK-cell phenotyping reveals impaired cytotoxicity, chronic activation, and exhaustion in VEXAS syndrome.

  • Decreased circulating NK cells were independently associated with an increased risk of severe infections in VEXAS syndrome.

Abstract

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is an autoinflammatory disorder caused by acquired somatic ubiquitin like modifier activating enzyme 1 (UBA1) mutations in hematopoietic stem cells, affecting peripheral myeloid and natural killer (NK) cells. Given the high rate of severe infections in patients with VEXAS, we hypothesized that NK-cell dysfunction contributes to this susceptibility. We conducted a comprehensive immune characterization of peripheral NK cells in patients with VEXAS (n = 40), patients with autoinflammatory diseases without UBA1 mutations (n = 22), and older sex-matched healthy controls (n = 16). Multiparameter phenotyping used cytometry by time-of-flight, single-cell RNA sequencing (scRNA-seq), whole-blood stimulation assays, and in vitro NK-cell cytotoxic assay. Peripheral NK cells in VEXAS were quantitatively and qualitatively impaired. Mass cytometry revealed reduced frequencies of mature cytotoxic CD56dim NK cells and expansion of the CD56high CD16dim subset. NK cells exhibited exhaustion features, including increased programmed cell death protein 1 expression, and reduced cytotoxic markers such as NKp46 and CD8α. scRNA-seq analysis showed decreased signatures of cytotoxicity and interleukin-2 (IL-2) and interferon gamma (IFN-γ) production, alongside increased inflammatory signatures. Whole-blood stimulation assays confirmed impaired IL-2, IFN-γ, and granzyme B production following Toll-like receptor 3 (TLR3), TLR4, and TLR7/TLR8 agonist stimulation. Extended NK phenotyping by flow cytometry confirmed reduced activating receptors’ expression and impaired IFN-γ production in VEXAS syndrome. Moreover, in vitro UBA1 inhibitors impaired NK-cell cytotoxic capacity and promote cell death. Finally, reduced NK-cell frequencies were independently associated with an increased risk of severe infections. These findings suggest that NK-cell dysfunction in VEXAS syndrome contributes to increased susceptibility to severe infections.

1.
Beck
DB
,
Ferrada
MA
,
Sikora
KA
, et al
.
Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease
.
N Engl J Med
.
2020
;
383
(
27
):
2628
-
2638
.
2.
Molteni
R
,
Fiumara
M
,
Campochiaro
C
, et al
.
Mechanisms of hematopoietic clonal dominance in VEXAS syndrome
.
Nat Med
.
2025
;
31
(
6
):
1911
-
1924
.
3.
Templé
M
,
Kosmider
O
.
VEXAS syndrome: a novelty in MDS landscape
.
Diagnostics (Basel)
.
2022
;
12
(
7
):
1590
.
4.
Georgin-Lavialle
S
,
Terrier
B
,
Guedon
AF
, et al
.
Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients
.
Br J Dermatol
.
2022
;
186
(
3
):
564
-
574
.
5.
Czech
M
,
Cuellar-Rodriguez
J
,
Patel
BA
, et al
.
Opportunistic infections, mortality risk, and prevention strategies in patients with vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome
.
Open Forum Infect Dis
.
2024
;
11
(
7
):
ofae405
.
6.
de Valence
B
,
Delaune
M
,
Nguyen
Y
, et al
.
Serious infections in patients with VEXAS syndrome: data from the French VEXAS registry
.
Ann Rheum Dis
.
2024
;
83
(
3
):
372
-
381
.
7.
Riescher
S
,
Lecomte
R
,
Danic
G
, et al
.
Susceptibility to mycobacterial infection in VEXAS syndrome
.
Rheumatol Oxford
.
2024
;
64
(
2
):
831
-
835
.
8.
Shimizu
T
,
Ide
H
,
Tsuji
Y
,
Koga
T
,
Kawakami
A
.
VEXAS syndrome complicated with severe infection
.
Rheumatol Oxford
.
2022
;
61
(
12
):
e374
-
e376
.
9.
Ferrada
MA
,
Savic
S
,
Cardona
DO
, et al
.
Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis
.
Blood
.
2022
;
140
(
13
):
1496
-
1506
.
10.
Ganesan
S
,
Murray
RM
,
Sotelo
J
, et al
.
Single-cell genotype-phenotype mapping identifies therapeutic vulnerabilities in VEXAS syndrome
.
bioRxiv
.
Preprint posted online 20 May 2024
.
11.
Gutierrez-Rodrigues
F
,
Kusne
Y
,
Fernandez
J
, et al
.
Spectrum of clonal hematopoiesis in VEXAS syndrome
.
Blood
.
2023
;
142
(
3
):
244
-
259
.
12.
Vivier
E
,
Tomasello
E
,
Baratin
M
,
Walzer
T
,
Ugolini
S
.
Functions of natural killer cells
.
Nat Immunol
.
2008
;
9
(
5
):
503
-
510
.
13.
Vivier
E
,
Nunès
JA
,
Vély
F
.
Natural killer cell signaling pathways
.
Science
.
2004
;
306
(
5701
):
1517
-
1519
.
14.
Orange
JS
.
Natural killer cell deficiency
.
J Allergy Clin Immunol
.
2013
;
132
(
3
):
515
-
525
.
15.
Boy
M
,
Bisio
V
,
Zhao
L-P
, et al
.
Myelodysplastic syndrome associated TET2 mutations affect NK cell function and genome methylation
.
Nat Commun
.
2023
;
14
(
1
):
588
.
16.
Crinier
A
,
Dumas
P-Y
,
Escalière
B
, et al
.
Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia
.
Cell Mol Immunol
.
2021
;
18
(
5
):
1290
-
1304
.
17.
Templé
M
,
Duroyon
E
,
Croizier
C
, et al
.
Atypical splice-site mutations causing VEXAS syndrome
.
Rheumatology
.
2021
;
60
(
12
):
e435
-
e437
.
18.
Kosmider
O
,
Possémé
C
,
Templé
M
, et al
.
VEXAS syndrome is characterized by inflammasome activation and monocyte dysregulation
.
Nat Commun
.
2024
;
15
(
1
):
910
.
19.
Duffy
D
,
Rouilly
V
,
Libri
V
, et al
.
Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli
.
Immunity
.
2014
;
40
(
3
):
436
-
450
.
20.
Bondet
V
,
Le Baut
M
,
Le Poder
S
, et al
.
Constitutive IFNα protein production in bats
.
Front Immunol
.
2021
;
12
:
735866
.
21.
Poli
A
,
Michel
T
,
Thérésine
M
,
Andrès
E
,
Hentges
F
,
Zimmer
J
.
CD56bright natural killer (NK) cells: an important NK cell subset
.
Immunology
.
2009
;
126
(
4
):
458
-
465
.
22.
Nielsen
N
,
Ødum
N
,
Ursø
B
,
Lanier
LL
,
Spee
P
.
Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A
.
PLoS One
.
2012
;
7
(
2
):
e31959
.
23.
Cubitt
CC
,
Wong
P
,
Dorando
HK
, et al
.
Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation
.
J Clin Invest
.
2024
;
134
(
15
):
e173602
.
24.
Ahmad
F
,
Hong
HS
,
Jäckel
M
, et al
.
High frequencies of polyfunctional CD8+ NK cells in chronic HIV-1 infection are associated with slower disease progression
.
J Virol
.
2014
;
88
(
21
):
12397
-
12408
.
25.
Lowdell
MW
,
Craston
R
,
Samuel
D
, et al
.
Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells
.
Br J Haematol
.
2002
;
117
(
4
):
821
-
827
.
26.
Luo
Z
,
Li
Z
,
Martin
L
, et al
.
Increased natural killer cell activation in HIV-infected immunologic non-responders correlates with CD4+ T cell recovery after antiretroviral therapy and viral suppression
.
PLoS ONE
.
2017
;
12
(
1
):
e0167640
.
27.
Marras
F
,
Nicco
E
,
Bozzano
F
, et al
.
Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
29
):
11970
-
11975
.
28.
Schierloh
P
,
Yokobori
N
,
Alemán
M
, et al
.
Increased susceptibility to apoptosis of CD56dimCD16+ NK cells induces the enrichment of IFN-gamma-producing CD56bright cells in tuberculous pleurisy
.
J Immunol
.
2005
;
175
(
10
):
6852
-
6860
.
29.
Carrega
P
,
Morandi
B
,
Costa
R
, et al
.
Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(-) cells and display an impaired capability to kill tumor cells
.
Cancer
.
2008
;
112
(
4
):
863
-
875
.
30.
Cruz-González
D de J
,
Gómez-Martin
D
,
Layseca-Espinosa
E
, et al
.
Analysis of the regulatory function of natural killer cells from patients with systemic lupus erythematosus
.
Clin Exp Immunol
.
2018
;
191
(
3
):
288
-
300
.
31.
Ng
SC
,
Plamondon
S
,
Al-Hassi
HO
, et al
.
A novel population of human CD56+ human leucocyte antigen D-related (HLA-DR+) colonic lamina propria cells is associated with inflammation in ulcerative colitis
.
Clin Exp Immunol
.
2009
;
158
(
2
):
205
-
218
.
32.
Ran
G he
,
Lin
Y qing
,
Tian
L
, et al
.
Natural killer cell homing and trafficking in tissues and tumors: from biology to application
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
205
.
33.
Chen
C
,
Meng
Y
,
Wang
L
, et al
.
Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the IκBa/NF-κB and MKP1/ERK/STAT1 pathways
.
Immunology
.
2014
;
142
(
2
):
307
-
319
.
34.
Hadjadj
J
,
Nguyen
Y
,
Mouloudj
D
, et al
.
Efficacy and safety of targeted therapies in VEXAS syndrome: retrospective study from the FRENVEX
.
Ann Rheum Dis
.
2024
;
83
(
10
):
1358
-
1367
.
35.
Ohira
M
,
Nishida
S
,
Tryphonopoulos
P
,
Ruiz
P
,
Ohdan
H
,
Tzakis
AG
.
Impact of steroids on natural killer cells against cytotoxicity and hepatitis C virus replication
.
Transplant Proc
.
2017
;
49
(
5
):
1160
-
1164
.
36.
Vitale
C
,
Chiossone
L
,
Cantoni
C
, et al
.
The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity
.
Eur J Immunol
.
2004
;
34
(
11
):
3028
-
3038
.
37.
Arellano-Ballestero
H
,
Sabry
M
,
Lowdell
MW
.
A killer disarmed: natural killer cell impairment in myelodysplastic syndrome
.
Cells
.
2023
;
12
(
4
):
633
.
38.
Gleason
MK
,
Ross
JA
,
Warlick
ED
, et al
.
CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets
.
Blood
.
2014
;
123
(
19
):
3016
-
3026
.
39.
Hejazi
M
,
Manser
AR
,
Fröbel
J
, et al
.
Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes
.
Haematologica
.
2015
;
100
(
5
):
643
-
652
.
40.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
41.
Obiorah
IE
,
Patel
BA
,
Groarke
EM
, et al
.
Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1
.
Blood Adv
.
2021
;
5
(
16
):
3203
-
3215
.
42.
Comont
T
,
Heiblig
M
,
Rivière
E
, et al
.
Azacitidine for patients with vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry
.
Br J Haematol
.
2022
;
196
(
4
):
969
-
974
.
43.
Raaijmakers
MHGP
,
Hermans
M
,
Aalbers
A
, et al
.
Azacytidine treatment for VEXAS syndrome
.
HemaSphere
.
2021
;
5
(
12
):
e661
.
You do not currently have access to this content.
Sign in via your Institution