• Larger CNS lymphoma tumor volume at baseline predicted TIAN occurrence after CD19-CAR therapy.

  • TIAN correlated with improved overall response rates and progression-free survival on multivariate analysis.

Abstract

Tumor inflammation-associated neurotoxicity (TIAN) was recently proposed as a unique complication of immunotherapy in patients with brain tumor. Here, we report a first comprehensive characterization of TIAN in patients with central nervous system (CNS) lymphoma (CNSL) treated with CD19-directed chimeric antigen receptor (CD19-CAR) T cells. TIAN occurred in 10 of 56 (17.9%) patients with CNSL, with clinical onset at a median 3.5 days (range, 1-9) after CD19-CAR T-cell infusion. It was less frequently associated with cytokine release syndrome (60% vs 100%; P = .009) than immune effector cell–associated neurotoxicity syndrome (ICANS). Although symptoms were usually transient and fully reversible, TIAN was associated with a fatal outcome in 1 patient. Larger CNS tumor volume at baseline allowed the identification of patients at risk for TIAN (area under the curve, 0.847; P = .002). Maximizing Youden J statistics, a discriminatory tumor volume threshold of >3.4 cm3 was determined, which carried 87.5% sensitivity and 80.5% specificity. TIAN correlated with higher overall response rates to CD19-CAR T cells (90% vs 52%; P = .036) and improved progression-free survival (hazard ratio, 0.22; 95% confidence interval, 0.07-0.61; P = .006) on multivariate Cox proportional hazard regression. Postmortem histopathological evaluation of a TIAN lesion revealed a dense macrophage population with central necrosis and peripheral reactive gliosis, accompanied by loss of white matter and intracytoplasmic myelin in foamy macrophages. Collectively, our work supports TIAN as a localized on-tumor, on-target neurotoxicity syndrome, closely related to preexisting CNSL lesions and distinct from ICANS. CNS tumor volume at baseline may allow to identify patients at risk and may guide management.

1.
Schuster
SJ
,
Svoboda
J
,
Chong
EA
, et al
.
Chimeric antigen receptor T cells in refractory B-cell lymphomas
.
N Engl J Med
.
2017
;
377
(
26
):
2545
-
2554
.
2.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
3.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
4.
Wang
M
,
Munoz
J
,
Goy
A
, et al
.
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
;
382
(
14
):
1331
-
1342
.
5.
Guo
AC
,
Cummings
TJ
,
Dash
RC
,
Provenzale
JM
.
Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics
.
Radiology
.
2002
;
224
(
1
):
177
-
183
.
6.
Frigault
MJ
,
Dietrich
J
,
Martinez-Lage
M
, et al
.
Tisagenlecleucel CAR T-cell therapy in secondary CNS lymphoma
.
Blood
.
2019
;
134
(
11
):
860
-
866
.
7.
Frigault
MJ
,
Dietrich
J
,
Gallagher
K
, et al
.
Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial
.
Blood
.
2022
;
139
(
15
):
2306
-
2315
.
8.
Alcantara
M
,
Houillier
C
,
Blonski
M
, et al
.
CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network
.
Blood
.
2022
;
139
(
5
):
792
-
796
.
9.
Siddiqi
T
,
Wang
X
,
Blanchard
MS
, et al
.
CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma
.
Blood Adv
.
2021
;
5
(
20
):
4059
-
4063
.
10.
Cook
MR
,
Dorris
CS
,
Makambi
KH
, et al
.
Toxicity and efficacy of CAR T-cell therapy in primary and secondary CNS lymphoma: a meta-analysis of 128 patients
.
Blood Adv
.
2023
;
7
(
1
):
32
-
39
.
11.
Karschnia
P
,
Arrillaga-Romany
IC
,
Eichler
A
, et al
.
Neurotoxicity and management of primary and secondary central nervous system lymphoma after adoptive immunotherapy with CD19-directed chimeric antigen receptor T-cells
.
Neuro Oncol
.
2023
;
25
(
12
):
2239
-
2249
.
12.
Abramson
JS
,
McGree
B
,
Noyes
S
, et al
.
Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
8
):
783
-
784
.
13.
Kaulen
LD
,
Karschnia
P
,
Doubrovinskaia
S
, et al
.
Toxicities and outcome after CD19-directed chimeric antigen receptor T-cell therapy for secondary neurolymphomatosis
.
Am J Hematol
.
2024
;
99
(
12
):
2411
-
2415
.
14.
Morris
EC
,
Neelapu
SS
,
Giavridis
T
,
Sadelain
M
.
Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy
.
Nat Rev Immunol
.
2022
;
22
(
2
):
85
-
96
.
15.
Cordas dos Santos
DM
,
Tix
T
,
Shouval
R
, et al
.
A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy
.
Nat Med
.
2024
;
30
(
9
):
2667
-
2678
.
16.
Karschnia
P
,
Jordan
JT
,
Forst
DA
, et al
.
Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells
.
Blood
.
2019
;
133
(
20
):
2212
-
2221
.
17.
Graham
CE
,
Velasco
R
,
Alarcon Tomas
A
, et al
.
Non-ICANS neurological complications after CAR T-cell therapies: recommendations from the EBMT Practice Harmonisation and Guidelines Committee
.
Lancet Oncol
.
2025
;
26
(
4
):
e203
-
e213
.
18.
Locke
FL
,
Miklos
DB
,
Jacobson
CA
, et al
.
Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma
.
N Engl J Med
.
2022
;
386
(
7
):
640
-
654
.
19.
Jacobson
CA
,
Chavez
JC
,
Sehgal
AR
, et al
.
Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2022
;
23
(
1
):
91
-
103
.
20.
Giavridis
T
,
van der Stegen
SJC
,
Eyquem
J
,
Hamieh
M
,
Piersigilli
A
,
Sadelain
M
.
CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade
.
Nat Med
.
2018
;
24
(
6
):
731
-
738
.
21.
Norelli
M
,
Camisa
B
,
Barbiera
G
, et al
.
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells
.
Nat Med
.
2018
;
24
(
6
):
739
-
748
.
22.
Santomasso
BD
,
Park
JH
,
Salloum
D
, et al
.
Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia
.
Cancer Discov
.
2018
;
8
(
8
):
958
-
971
.
23.
Gust
J
,
Hay
KA
,
Hanafi
L-A
, et al
.
Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells
.
Cancer Discov
.
2017
;
7
(
12
):
1404
-
1419
.
24.
Sterner
RM
,
Sakemura
R
,
Cox
MJ
, et al
.
GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts
.
Blood
.
2019
;
133
(
7
):
697
-
709
.
25.
Vinnakota
JM
,
Biavasco
F
,
Schwabenland
M
, et al
.
Targeting TGFβ-activated kinase-1 activation in microglia reduces CAR T immune effector cell-associated neurotoxicity syndrome
.
Nat Cancer
.
2024
;
5
(
8
):
1227
-
1249
.
26.
Parker
KR
,
Migliorini
D
,
Perkey
E
, et al
.
Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies
.
Cell
.
2020
;
183
(
1
):
126
-
142.e17
.
27.
Nomiyama
T
,
Setoyama
D
,
Yamanaka
I
, et al
.
Cerebrospinal fluid proteomics exerts predictive potential for immune effector cell-associated neurotoxicity syndrome (ICANS) in CAR-T cell therapy
.
Leukemia
.
2025
;
39
(
4
):
983
-
987
.
28.
Rubin
DB
,
Al Jarrah
A
,
Li
K
, et al
.
Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy
.
JAMA Neurol
.
2020
;
77
(
12
):
1536
-
1542
.
29.
Amidi
Y
,
Eckhardt
CA
,
Quadri
SA
, et al
.
Forecasting immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor t-cell therapy
.
J Immunother Cancer
.
2022
;
10
(
11
):
e005459
.
30.
Mount
CW
,
Majzner
RG
,
Sundaresh
S
, et al
.
Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas
.
Nat Med
.
2018
;
24
(
5
):
572
-
579
.
31.
Mahdi
J
,
Dietrich
J
,
Straathof
K
, et al
.
Tumor inflammation-associated neurotoxicity
.
Nat Med
.
2023
;
29
(
4
):
803
-
810
.
32.
Majzner
RG
,
Ramakrishna
S
,
Yeom
KW
, et al
.
GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas
.
Nature
.
2022
;
603
(
7903
):
934
-
941
.
33.
Brandsma
D
,
Stalpers
L
,
Taal
W
,
Sminia
P
,
van den Bent
MJ
.
Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas
.
Lancet Oncol
.
2008
;
9
(
5
):
453
-
461
.
34.
Okada
H
,
Weller
M
,
Huang
R
, et al
.
Immunotherapy response assessment in neuro-oncology: a report of the RANO working group
.
Lancet Oncol
.
2015
;
16
(
15
):
e534
-
e542
.
35.
Schubert
ML
,
Kunz
A
,
Schmitt
A
, et al
.
Assessment of CAR T cell frequencies in axicabtagene ciloleucel and tisagenlecleucel patients using duplex quantitative PCR
.
Cancers (Basel)
.
2020
;
12
(
10
):
2820
.
36.
Gupta
M
,
Burns
EJ
,
Georgantas
NZ
, et al
.
A rapid genotyping panel for detection of primary central nervous system lymphoma
.
Blood
.
2021
;
138
(
5
):
382
-
386
.
37.
Monje
M
,
Mahdi
J
,
Majzner
R
, et al
.
Intravenous and intracranial GD2-CAR T cells for H3K27M(+) diffuse midline gliomas
.
Nature
.
2025
;
637
(
8046
):
708
-
715
.
38.
Choi
BD
,
Gerstner
ER
,
Frigault
MJ
, et al
.
Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma
.
N Engl J Med
.
2024
;
390
(
14
):
1290
-
1298
.
39.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transpl
.
2019
;
25
(
4
):
625
-
638
.
40.
Abrey
LE
,
Batchelor
TT
,
Ferreri
AJM
, et al
.
Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma
.
J Clin Oncol
.
2005
;
23
(
22
):
5034
-
5043
.
41.
Cederquist
GY
,
Schefflein
J
,
Devlin
SM
, et al
.
CNS bridging radiotherapy achieves rapid cytoreduction before CAR T-cell therapy for aggressive B-cell lymphomas
.
Blood Adv
.
2024
;
8
(
19
):
5192
-
5199
.
42.
Gettinger
SN
,
Horn
L
,
Gandhi
L
, et al
.
Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer
.
J Clin Oncol
.
2015
;
33
(
18
):
2004
-
2012
.
43.
Fujimoto
D
,
Yoshioka
H
,
Kataoka
Y
, et al
.
Pseudoprogression in previously treated patients with non-small cell lung cancer who received nivolumab monotherapy
.
J Thorac Oncol
.
2019
;
14
(
3
):
468
-
474
.
44.
Nishino
M
,
Giobbie-Hurder
A
,
Manos
MP
, et al
.
Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: identifying markers for clinical outcome and treatment decisions
.
Clin Cancer Res
.
2017
;
23
(
16
):
4671
-
4679
.
45.
Platten
M
,
Bunse
L
,
Wick
A
, et al
.
A vaccine targeting mutant IDH1 in newly diagnosed glioma
.
Nature
.
2021
;
592
(
7854
):
463
-
468
.
46.
Salvador
AF
,
de Lima
KA
,
Kipnis
J
.
Neuromodulation by the immune system: a focus on cytokines
.
Nat Rev Immunol
.
2021
;
21
(
8
):
526
-
541
.
47.
Galea
I
.
The blood-brain barrier in systemic infection and inflammation
.
Cell Mol Immunol
.
2021
;
18
(
11
):
2489
-
2501
.
48.
Tringale
KR
,
Scordo
M
,
Yahalom
J
, et al
.
Outcomes and relapse patterns in primary central nervous system lymphoma: longitudinal analysis of 559 patients diagnosed from 1983 to 2020
.
Neuro Oncol
.
2024
;
26
(
11
):
2061
-
2073
.
49.
Bühring
U
,
Herrlinger
U
,
Krings
T
,
Thiex
R
,
Weller
M
,
Küker
W
.
MRI features of primary central nervous system lymphomas at presentation
.
Neurology
.
2001
;
57
(
3
):
393
-
396
.
50.
Gust
J
,
Finney
OC
,
Li
D
, et al
.
Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy
.
Ann Neurol
.
2019
;
86
(
1
):
42
-
54
.
51.
Barajas
RF
,
Politi
LS
,
Anzalone
N
, et al
.
Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG)
.
Neuro Oncol
.
2021
;
23
(
7
):
1056
-
1071
.
52.
Radke
J
,
Ishaque
N
,
Koll
R
, et al
.
The genomic and transcriptional landscape of primary central nervous system lymphoma
.
Nat Commun
.
2022
;
13
(
1
):
2558
.
53.
Hernández-Verdin
I
,
Kirasic
E
,
Wienand
K
, et al
.
Molecular and clinical diversity in primary central nervous system lymphoma
.
Ann Oncol
.
2023
;
34
(
2
):
186
-
199
.
54.
Hai
L
,
Friedel
D
,
Hinz
F
, et al
.
Distinct epigenetic and transcriptional profiles of Epstein-Barr virus (EBV) positive and negative primary CNS lymphomas
.
Neuro Oncol
.
2025
;
27
(
4
):
979
-
992
.
55.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
56.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
;
171
(
2
):
481
-
494.e15
.
You do not currently have access to this content.
Sign in via your Institution